Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Clinics ; 68(4): 463-468, abr. 2013. graf
Article in English | LILACS | ID: lil-674233

ABSTRACT

OBJECTIVES: This paper proposes imaging with 3-dimensional vibroacoustography for postoperatively assessing the uncovered cup area after total hip arthroplasty as a quantitative criterion to evaluate implant fixation. METHODS: A phantom with a bone-like structure covered by a tissue-mimicking material was used to simulate a total hip arthroplasty case. Vibroacoustography images of the uncovered cup region were generated using a two-element confocal ultrasound transducer and a hydrophone inside a water tank. Topological correction based on the geometry of the implant was performed to generate a 3-dimensional representation of the vibroacoustography image and to accurately evaluate the surface. The 3-dimensional area obtained by the vibroacoustography approach was compared to the area evaluated by a 3-dimensional motion capture system. RESULTS: The vibroacoustography technique provided high-resolution, high-contrast, and speckle-free images with less sensitivity to the beam incidence. Using a 3-dimensional-topology correction of the image, we accurately estimated the uncovered area of the implant with a relative error of 8.1% in comparison with the motion capture system measurements. CONCLUSION: Measurement of the cup coverage after total hip arthroplasty has not been well established; however, the covered surface area of the acetabular component is one of the most important prognostic factors. The preliminary results of this study show that vibroacoustography is a 3-dimensional approach that can be used to postoperatively evaluate total hip arthroplasty. The favorable results also provide an impetus for exploring vibroacoustography in other bone or implant surface imaging applications. .


Subject(s)
Humans , Arthroplasty, Replacement, Hip , Elasticity Imaging Techniques/methods , Elasticity Imaging Techniques/instrumentation , Imaging, Three-Dimensional , Medical Illustration , Phantoms, Imaging , Range of Motion, Articular , Reproducibility of Results , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL